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In this paper we present a state of the art overview in the 
contemporary cloud computing research area. By doing so, we 
focus on the most important technologies that are the backbone 
behind the modern Internet services and point out some 
interesting trends. Additionally, we point of various examples of 
employing cloud computing technologies used in different  
domains and for achieving different goals.

I. INTRODUCTION

In the modern Internet the quality of services measured by 
performance and efficiency has became a increasingly 
important feature. The business concept and functionality of 
the product are sill very important, however even the best web 
applications will not create any revenue if they are unavailable 
due to traffic problems. 

As Internet popularity grows and as it becomes available for 
more people the contemporary web applications need to handle 
huge concurrent processing demands. The high competition on 
the market of Internet services and development of new 
application design paradigms (i.e. Web 2.0) has caused a burst 
of new types of services that let users to shift processing from 
their local machines to remote servers.  Additionally, following 
the trend to store all kinds of data on-line rather then on a local 
hard drive, the server-side solutions need to cope with a 
problem of handling large portions of data and processing very 
selected subsets on mass scale. The example of a video hosting 
service called YouTube shows that selected website popularity 
can grow a lot faster then the average companies capabilities to 
suppor t r e l i a b l e a nd h igh - e nd se r ve r ha r dw a r e 
infrastructure[1].

In the response to such needs a number of companies have  
developed software solutions and application design paradigms 
that are known under a common name of cloud 
computing(ref?) technologies.

In the following article we do not tackle neither analyze the 
topic of cloud computing services architecture, components 
etc. Our intent is to gather information about the technologies 
in the background that make large-scale processing possible 
and allow to deliver efficient products for end users. 
Furthermore within such  solutions we focus on those referred 
to as data-intensive scalable computing(DISC)[2]. Namely, we 
put most emphasis on proposals by Google (see Sec.3) and 
their implementations prepared by Yahoo and the open-source 
communities. They are the ones best documented and therefore 

prove as a good example to depict the mechanisms used in 
data-intensive processing over the Internet. Additionally, we 
conclude the state of the art description with information about 
various interesting platforms delivered by other companies (see 
Sec. 4).

TABLE I
LARGE-SCALE COMPUTER SYSTEMS (BASED ON REF. [2])

No. Type Characteristic

1 Current Supercomputers

compute all sort of complex and 
time consuming calculation 
problems; very big 
multiprocessor machines; 
superior arithmetic performance 
per CPU; high-end CPU 
interconnection technologies; 
applications written in a very 
low level language, heavily 
optimized code

2 Transaction Processing 
Systems

maintained for the needs of 
financial institutions, airlines 
online retailers etc.; main goal 
is data processing and analysis; 
big data consistency 
requirements, strong security 
and reliability constraints (i.e. 
airline systems failure can be 
matter of big financial loss or 
even involve human life hazard 
situations).  

3 Grid Systems

a form of distributed 
computing; set of loosely 
coupled machines perform 
(usually) large data processing 
tasks; single nodes are very 
independent – the data 
exchange between nodes is 
minimal due to high time 
constraints

4 Data-intensive Scalable 
Computing

similar to grid computing- a set 
of machines perform data-
centric computing tasks;single 
nodes are better communicated 
then in a grid, data exchange is 
still small but more interaction 
is possible; 



II. OVERVIEW

The large-scale processing model characteristic for the 
aforementioned DISC systems is strictly tied to the hardware 
architecture that those solutions utilize. In his proposal for 
constructing a multi-purpose DISC center Bryant[2] makes a 
comparison of large-scale processing systems(see Table 1) and 
defines some of the characteristics of DISC. Regarding the 
hardware design he points out most similarities to Grid 
computing. On the hardware level DISC system consists of a 
large a number of independent nodes, each with its own (single  
or multiple) processors and local memory – much like in a 
grid. The key difference to grid computing is the location of all 
DISC nodes is a single facility. Whereas Grid systems in the 
context of Internet network try to take advantage of the 
existing vast distributed architecture (i.e. SETI[3]) and put it 
into use, DISC is about creating large computational centers 
from scratch to respond a very selected area of data processing  
problems.

The systems that we describe further(see Sec. 3) were 
originally created to support processing needs of web search 
engines. Although currently such architectures find many other 
appliances the trend was initiated by the Inktomi company that 
created a 300-processor system back in 1998 for their search 
engine infrastructure[4]. The model was later adopted by the 
current top players in the search engine market and also other  
companies that deliver solutions classified as could 
computing(see Sec. 4). The general computation paradigm is 
driven by the distribution of data across many hardware nodes. 

Each node supplied with its own processing unit performs 
certain operations on local data. The output is later aggregated 
by a master scheduler and a number of slave scheduler tasks. 
Regardless how simple that does sound in theory, in practice, 
in a distributed environment it proves to be a very difficult 
task. In the next section we present how Google, currently 
being  one of the most often explored case studies in DISC, 
coped with the task by proposing a number of abstraction 
layers to simplify application development for their distributed 
data centers. Namely: MapReduce[5] – a programming model, 
BigTable[6] – a non-relational distributed database, GFS[7] - 
distributed file system, being the base for BigTable.

III. MAPREDUCE, BIGTABLE AND THEIR IMPLEMENTATIONS

A. MapReduce

MapReduce is a programming model designed to simplify 
the task of processing large datasets across hundreds of 
machines. The abstraction layer assumes that every task can be 
accomplished with two basic steps: mapping data and 
aggregating the results of map functions across all nodes(see  
Fig. 1). In practice the developer needs only to design two  
functions for each of those operations. Such approach enables 
to forget about problems of parallel computing, data 
distribution, failure handling and many others. The developer 
only needs to focus on solving his problem with those simple 
tools:

map (k1, v1) → list (k2, v2) (1)
reduce (k2, list(v2)) → list (v2) (2)

Fig. 1.  The MapReduce execution workflow overview[5].



The map function (1) takes a set of input key/value pairs and 
produces output key/value pairs. Next, the MapReduce logic 
aggregates all values from outputs of map functions with the 
same key and passes them to the reduce function (2). The job 
for the reduce function is to merge all values into a smaller 
subset -typically just a zero/one output. To explain this better 
we present a simple example provided by Dean et al.[5]. 

map(String key, String value) : (3)
// key: document name
// value: document contents
for each word w in value:
  EmitIntermediate(w, “1”);

reduce (String key, Iterator values) : (4)
// key: a word
// value: a list of word counts in a document
int result = 0;
for each v in values:
   result += ParseInt(v);
Emit(AsString(result));

In the above example the map function (3) emits occurrence 
count for each word it finds in a document. The reduce 
function (4) will sum all word counts for each word across 
many documents. The full C++ code for this example has been 
presented in Ref. [5]. 

Although the developer only needs to implement the two 
aforementioned functions it is also good to know how the 
execution flow proceeds to get a better understanding of the 
solution architecture(see Fig. 1):

1. Input files are split into a number of pieces, assigned 
to machines and map functions are started on the 
corresponding hosts.

2. One of the machines is given master status. It is 
responsible for assigning the tasks(map or reduce) to 
other idle machines – the workers.

3. The worker machine reads the assigned data, extracts 
key/value pairs and passes them to the map function.

4. Periodically the output of map functions are written 
from the memory buffer to local disks and partitioned 
for the reduce workers. The locations along with 
notifications of write operations are passed to the 
master machine which is responsible for alerting 
reduce workers.

5. Reduce workers use remote calls to read data of the  
map workers disks. Before doing their tasks the 
reduce workers sort the read data according to keys 
and next group all values for the same key. 

6. The reduce workers iterate over their set of unique 
keys and pass the parameters to reduce function. The 
output is written to the output file for the 
corresponding data partition. The final output is 
available as a set of files(their number is equal to the 
amount of reduce workers).

The presented workflow is also employed by Hadoop[8] – an 
implementation of MapReduce. In 2004 Google did release 
information about research on data-intensive processing but the 
papers only describe the general idea and some evaluation 
results. Due to obvious commercial reasons no working 
software or implementation details were made available. 
However, Google's direct competitor – Yahoo went a step 
further. They took the knowledge delivered by Google and 
produced implementations that exactly comply to the described 
model. Furthermore the basic versions of the implementations 
were disclosed and are managed as open-source projects. The  
benefits of such actions can be seen both in the commercial 
and research environments by viewing the number and the 
characteristics of most successful deployments[9]. Apart of the 
informative value the list can be a good source of success  
stories that tell where technologies like Hadoop and 
MapReduce apply. Additionally analysis of vendors and 
centers that use Hadoop exposes the vast scaling capabilities. 

Fig. 2.  The GFS Architecture[7].



The biggest reported deployment of Hadoop by Yahoo operates 
on a cluster with 10,000 cores in total[10]. At the same time, 
successful deployments in other companies and some of the 
universities show that even with a small number of nodes (i.e. 
10-50) the technology can be useful.

B. Google File System (GFS)

The Google File System (GFS) among other is a technology 
that lets MapReduce (and also further described BigTable) 
read/write data in a distributed environment like it was a single 
virtual hard drive. The characteristics of this system are very 
much determined by the hardware that Google uses for its web 
search engine and other applications. 

The clusters are constructed of commodity parts, therefore 
there are very prone to failure. In case of a system constructed 
from hundreds or thousands of machines, permanent 
equipment failures are a normal part of the process rather then 
an exception. Issues such as fault detection, monitoring and 
recovery are a very important part of the software. 

The entire system is supposed to run only for a particular 
type of tasks. With respect to data read and write operations 
applications that run on Google clusters do not act like normal 
desktop software. The size of data accessed data is different  
and the frequency of requests for selected subsets as well. In 
GFS single files are a lot bigger then on a casual system, 
ranging up to gigabytes of data. Also, for efficiency reasons, 
when writing files, the new data is appended rather then 
overwritten. Therefore, in practice, once written files are only 
read.

Although the file system constructed by Google has totally 
different constraints then the regular operating file systems, it 
presents more or less the same interface to the user. The files 
are identified by paths and organized hierarchically in 
directories. Furthermore the system does support the usual 
operations like: create, delete, open, close, read, write.

The general architecture of GFS is rather simple (see Fig. 2) 
- the system is composed of a single master and multiple slave 
machines (called chunkservers) that store the actual files. 
Similarly as in typical file systems the files are split into 
chunks, however in GFS the chunk size is a lot bigger (64 
MB). Due to the aforementioned equipment failure problems 
each chunk is replicated. The GFS master stores metadata 
about the filenames, file location in the abstract directory 
hierarchy and location of the file chunks and their replicas on 
the chunkservers. The single master architecture simplifies the 
entire system, however it also exposes the danger of master 
becoming the bottleneck of the system. Therefore all the read/
write data operations are exchanged directly between 
chunkservers and the application client.  

Similarly like with MapReduce, GFS also has its counterpart 
within Yahoo's products. It is called Hadoop File 
System(HDFS)[11].

C. Bigtable

Bigtable is a distributed storage system based on the Google 
File System. Its suppose to leverage from the file system in 

order to store structured information much like a database. 
However, contrary to the relational databases, it provides a lot 
less storage and data organization tools and at the same time 
delivers a lot better performance for huge datasets. 

It has to be noted, that similarly as MapReduce and GFS,  
Bigtable is not meant for everyone. The range of appliances is 
very selected. The user can only read and write data to a single  
map. There is no sophisticated query language(i.e. like SQL) 
nor data split to tables with relations.

In the Bigtable data model, the rows in the map are indexed 
by a row key, a column key and a timestamp. Unlike relational  
databases there are no datatypes – each row is just an array of  
bytes (see Fig. 4).

Additionally, column keys are grouped into column families  
common for each row. The concept of families extends the 
regular concept of a column in a relational table to bit to make 
the map model more flexible. Each family usually contains the 
same types of data. The continues columns in the family are 
addressed by adding a qualifier to the family name(see Fig. 5). 
Finally the third type of indexing in the Bigtable is the 
timestamp. The data model allows to store many versions of 
the same data in a single row. Each is indexed by either server 
time of the moment data was stored (measured in milliseconds) 
or is explicitly assigned by the client application.

The open-source implementation of BigTable originally 
delivered by Yahoo is called Hbase[12].

D. Implementations

Apart of the most notable, earlier mentioned Google and 
Yahoo implementations the discussed technologies find use in 
other companies as well. Most often other vendors adopt the 
already available code of Hadoop and extend it for their  
particular needs[9]. However there is a number of original 
contributions as well. In this subsection we describe some of 
the interesting implementations while later (see Sec. 4) we 
mention particular services that employ DISC to deliver some 
business value.

Greenplum[13] and Aster Data Systems[14] both provide 
their individual implementations of MapReduce paradigm with 
focus on database processing and large-scale data analysis.  

(row:string, column:string, time:int64) → string

Fig. 4.  Row indexing in Bigtable[6].
 

Fig. 5.  Sample row from Bigtable with inverted page URL address as row 
index and “contents” and “anchor” column families. The t3, t5, t6, t8, t9 
values symbolize the third type of indexing in Bigtable -timestamp [6].

 



Interestingly both of those companies merge MapReduce 
principals with regular SQL processing rather then solutions 
similar to BigTable. Contrary to the JAVA based Hadoop both 
solutions support a variety of other languages like C/C++, Perl 
or Python.

Similar as Hadoop, the GridGain[15] is an open-source 
MapReduce implementation. From the technical point of view 
the biggest difference is in the initial process of Map tasks 
assignment to the nodes. In the MapReduce algorithm the task 
is split into subtasks and workers pull the split parts as soon as 
they have free processor time. In GridGain the subtasks are 
pushed to the nodes. Authors claim that this proves to be an 
advantage since it gives more load balancing capabilities. It 
practice it should be noted that this benefit is rather situational 
and depends on users needs. Apart of extra functionality it 
introduces some additional complexity – the developer has to 
plan ahead so that no worker does stay needlessly idle. 
Although GridGain seems to be far less popular then Hadoop, 
it shows to be better documented and is more welcoming for 
beginners.

Additionally there is a number of minor MapReduce 
implementations that did not go into main stream far various 
reasons. Some are done for specific hardware platforms, 
including: Phoenix [16] for shared-memory systems like 
Solaris, MapReduce implementation on Cell[17] or Mars[18] 
an implementation for graphic processors(GPU). Others are 
written for use with less popular programming languages like: 
Skynet[19] for Ruby, Disco[20] written in Erlang and Python 
or Holumbus[21] a library for Haskell language. Finally some 
just employ MapReduce ideas to achieve very specific tasks: 
FileMap[22] a lightweight implementation meant to be used 
alongside with Unix command line file processing tools or 
CouchDB[23] a document-oriented database that uses some of 
MapReduce principals to achieve better scalability.

IV. CLOUD COMPUTING TECHNOLOGY APPLIANCES

In the previous sections we have given an overview of the 
large-scale processing technologies and have shown how they 
work. In this section we introduce some of the actual cloud 
computing products that take advantage of the distributed 
computing paradigms.

As it might be expected, both Google and Yahoo use the 
technologies very extensively in their products. With respect to 
Google it discloses several examples and evaluation results in 
the papers about BigTable[6] and MapReduce[5]. Regarding 
MapReduce the examples are quite general and among others  
include problems such as: machine learning and data 
generation for web search service, clustering information for 
Google News, extraction of data used for reports in popular 
queries. The BigTable is used in products like Google 
Analytics1, Google Earth2 or Google Personalized Search3. 
Depending on the solution the use of BigTable is different. For 

1 http://www.google.com/analytics/
2 http://earth.google.com/
3 http://www.google.com/psearch

example, in Google Analytics the tables are used to store large 
quantities of statistical information about websites (i.e. user 
visits per day). Interestingly this example also exposes use of 
MapReduce. Among others, Google Analytics uses two tables: 
one that has a row for each single user visit (identified with 
website name and date of the visit – table size around 200TB), 
second table with summaries for each website (size up to 
20TB). The second table is generated using MapReduce from 
the contents of the first table. 

Apart of the products that use large scale processing in a 
transparent way for the end user it is possible to for a casual 
developer to take advantage of Google's resources through 
Google AppEngine[24]. The company claims to share the very 
same tools and resources that their own developers use. 
Therefore the product offers web application serving along 
with persistent storage both based on Google large-scale 
processing technologies. However, applications have to be 
implemented in Python and are a subject of limitations and 
quotas for storage space and bandwidth. A huge benefit is the 
availability of the entire service for free with some basic 
limitations (i.e.500 MB storage space and 5 million views per 
month) that can be extended by enabling the paid version.

Other interesting vendor of large scale services is Amazon4. 
The company delivers both online storage services and 
processing power for rent. The synergy between the services  
allows to use them as complementary products to run a fully 
functional large scale commercial web application. 
Nevertheless Amazon services are also known to be used for 
research and private purposes due to relatively low costs in 
comparison to constructing a data center from scratch. Thanks 
to the relatively fast and simple availability of computational 
time new possibilities arise. With reference to earlier 
mentioned MapReduce it is possible to run Hadoop instances 
on Amazon EC2[25] server that will operate on S3 storage[26]. 
Therefore both services can be used for some occasional needs  
to process large quantities of data or in some particular 
research projects that need to cope with big amount of  
evaluation data to test some of the research results. In  
comparison to Google Apps, Amazon service has similar 
principals but offers a lot more broad choice of technologies 
for development of applications (a number different server side  
technologies both for application development and data 
storage). An interesting use of Amazon technology is 
TimeMachine implemented by New York times to browse 
publicly available newspaper scans[26].

Recently released Microsoft Azure[28] is a service similar to 
the aforementioned Google AppEngine and Amazon EC2. Due 
to the early stage it is still hard to say how popular the service 
will become. Nevertheless the example of Microsoft shows  the 
how the leading companies in various Information Technology 
branches invest in infrastructures for such type of web 
application development. In comparison to its competitors 
Microsoft has an advantage of wide range of products and long  
history of developer tools market. Along with the release of the 

4 http://www.amazon.com/



platform Microsoft provided support for applications 
developers within the Visual Studio framework.

Other interesting use of cloud computing in business is 
connected to software-as-an-service model (SaaS). The leading 
provider in the area Salesforce.com[29], contrary to Google 
and other vendors of cloud computing infrastructures does not 
deliver a platform for application developers. Its target group 
are companies that need read-to-use solutions. Salesforce.com 
offers to develop and maintain highly scalable applications. 
Although currently the company became so successful that is 
invests in new types of products that enable increasing 
involvement of external developers, the core services remain in 
the Customer Relationship Management (CRM) area.

It has to be noted that apart of services that we categorize as 
cloud computing a number of large and popular internet portals 
also use the very same technologies to cope with their 
efficiency problems. Apart of the aforementioned YouTube(see 
Sec. 1), MySpace is disclosed to be a customer of Aster Data 
Systems and is using their large scale data warehousing 
product with MapReduce implementation called nCluster[14].

V. CONCLUSIONS

Analyzing the software models presented a question arises. 
When to use those solutions? Where is the border line for 
regular multiprocessor or multicore machines becoming 
insufficient in terms of efficiency and DISC systems starting to 
have advantage? Observing the given examples one can notice 
that the response to that question is very individual. With some 
specific types of data and operations to perform even small 
clusters can prove to be a good solution. Nevertheless, when 
creating a cluster for a DISC system it has to be kept in mind 
that the benefits come at a price. Maintaining such a system 
and even the initial configuration are sophisticated tasks. 
Information about those technologies is shared by companies 
but only to a certain extent. Even the described open-source  
implementations are only a small part of a bigger picture that 
developers let out to the public. Therefore setting up a system 
that would, in practice, successfully use those tools is hard 
task.
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